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Abstract 

Background:  Energy demand for reproduction leads to a wide diversity of foraging and life-history strategy 
among wild animals, linking to a common objective to maximize reproductive success. Semelparous squid species 
in particular can use up to 50% of the total energy intake for reproduction. However, the energy acquisition strat-
egy for reproduction is still a controversial issue regarding whether the squid shift in diet ontogenetically. Here we 
used Argentinean shortfin squid (Illex argentinus) as a case study to investigate the strategy of energy acquisition for 
reproduction, by analyzing energy density of the squid’s reproductive tissues including ovary, nidamental glands and 
oviduct eggs, and stable isotopes and fatty acids of the squid’s ovary.

Results:  The reproductive energy (the sum of the energy accumulated in ovary, nidamental glands and oviduct 
eggs) increased significantly with maturation. The ovary nitrogen stable isotopes (δ15N) showed a significant increase 
with maturation, but the increase by maturity stage was not equal to the typical enrichment of about 3‰ per trophic 
level. Isotopic niche width showed an increasing trend with maturation, and isotopic niche space exhibited greater 
overlap at advanced maturity stages. The relative amounts of 16:0, 20:5n3 and 20:4n6 in the ovary, tracing for carni-
vores and top predators, increased after the onset of maturation. The overall fatty acid profiles of the ovary showed 
significant differences among maturity stages, but obvious overlaps were found for mature squids. Mixed-effects 
model results revealed that reproductive energy was positively correlated with δ15N values. The reproductive energy 
was also positively related to the relative amounts of 18:0 and 20:4n6, respectively tracing for herbivores and top 
predators.

Conclusions:  Our results validate that the squid shifts to feed on higher trophic prey for reproduction as energy 
demand increases once maturation commences. However, the squid does not shift feeding habits at a trophic level 
but instead broadens prey spectrum, coupled with increasing intake of higher trophic prey items, to meet the energy 
demand for reproduction. Such energy acquisition strategy may be selected by the squid to maximize reproductive 
success by balancing energy intake and expenditure from foraging, warranting future studies that aim to clarify such 
strategy for reproduction among semelparous species.
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Background
Energy demands scale differently with species growth 
and diet, and particularly the follow of reproductive 
energy leads to a wide diversity of life-history among wild 
animals [1]. Behavioral and life-history strategies for an 
animal are selected for or against over evolutionary time 
to acquire energy from prey and manage energy budgets 
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[2]. At a coarse scale, these strategies are centered on 
maximizing reproduction to leave as many descendants 
as possible [3, 4]. Indeed, the most substantial metabolic 
expenditure for many species occurs during reproduction 
[5, 6]. This is particularly a case for semelparous animals, 
which on average, invest much more energy into a sin-
gle reproductive episode before death than iteroparous 
animals that reproduce in multiple cycles over the course 
of their lifetime [1, 7]. However, due to the conservation 
of matter and energy where resources allocated to one 
function are not available for others, animals must face 
a fundamental trade-off in allocating limited resources to 
a basic life-history function such as survival and repro-
ductive investment [8]. Driven by the trade-off, energy 
demand and allocation to reproduction appear to inter-
act with the physiological and metabolic constraints of an 
animal to give rise to the remarkable diversity of foraging 
and life-history strategies observed in nature [9].

Squid are one of the most important cephalopod 
species [10], playing an essential role in the trophic 
webs of marine ecosystems [10] and global production 
of marine fisheries [11]. They are well-known for having 
a monocyclic life-history, characterized by a short 
lifespan, fast growth and semelparous reproduction 
[10]. During maturation they usually allocate large 
amounts of energy for reproduction that can amount to 
50% of their body mass [12]. This allocation of energy 
influences the number and success of offspring, and 
ultimately determines population size and stability over 
time [13, 14]. To meet energy demands for reproduction, 
these species likely evolved an ontogenetic shift in diet, 
coupled with opportunistic and voracious foraging 
behavior [10, 15]. For example, Ommastrophid squids 
shift in diet from crustaceans to fish as they grow, in 
which there is a marked increase in the proportion of 
fish [16–18]. Since prey items such as fish occupy higher 
trophic positions, they have greater nutrient content [19] 
and greater energy density [20, 21]. It is expected that 
the uptake of such prey items would improve metabolic 
energy and support better life-history functions [22]. 
However, higher trophic animals generally have better 
predator avoidance, which in turn increases the energy 
spent by the consumers on hunting [23]. Such energy 
expenditures should theoretically be saved when the 
consumer forages for small prey species to gain a 
comparative energy resource [24]. It is also assumed 
that the reason why squid species shift feeding habits 
ontogenetically is because they become better at hunting 
as they grow rather than the increased need of energy for 
reproduction [15, 25]. It is still unclear how reproductive 
energy needs are met for semelparous animals, which is 
important for understanding their life-history.

We used Argentinean shortfin squid Illex argetinus as 
the model system to investigate the energy acquisition 
strategy for the semelparous squids during maturation. 
This species represents a typical semelparous squid 
species, and is well documented for its fast growth, 
short life span and large amount of energy drawn 
for reproduction once maturation commences [26]. 
Furthermore, this species not only plays a key role 
as a transient “biological pump” in the southwest 
Atlantic ecosystem [27], but it is also one of the most 
important commercial species in the world [11]. In 
this study, we estimated the reproductive energy of I. 
argentinus by applying the technique of tissue energy 
density, and evaluated the energy acquisition strategy 
for reproduction using biochemical markers of stable 
isotopes and fatty acid profiles. The technique of 
tissue energy density has been successfully applied 
to investigate reproductive energy accumulation 
during maturation for I. argentinus [28, 29], as well as 
squid species Dosidicus gigas [30] and Sthenoteuthis 
oualaniensis [31]. Generally, carbon (δ13C) and 
nitrogen (δ15N) stable isotopes are transferred from 
dietary sources to consumers in a predictable manner 
[32], where δ15N is typically enriched by about 3‰ 
per trophic level, and δ13C shows little change due 
to trophic transfer [32, 33]. Thus, the δ15N of a given 
consumer can be used to reflect the variations of prey, 
and the isotopic space can be used to indicate feeding 
niche widths of the predator [32]. Fatty acids are 
essential components of all living organisms and passed 
with little to no modification from prey to predator, 
which make them useful tracers of diets and marine 
food-web structure [34]. Analyzing the stable isotopes 
and fatty acids of reproductive tissues can infer the 
energy acquisition strategy for reproduction for the 
squid.

We randomly collected the Argentinean shortfin squid 
I. argetinus specimens from the catches of commercial 
jiggers on the high seas area of the Patagonian shelf in 
the southwest Atlantic Ocean (61° 09′ W ~ 62° 53′ W, 46° 
08′ S ~ 47° 51′ S; Fig. 1) from January to March 2019. We 
aimed to investigate the strategy of energy acquisition 
when energy demand for reproduction is the greatest 
for the squid [28, 35]. We particularly aimed to clarify 
whether the squid exclusively feeds on prey items at a 
higher trophic or lower trophic position, or uses a com-
bination, to meet reproductive energy demands. To fur-
ther clarify the energy acquisition strategy, we also used 
linear mixed-effects models [36] to evaluate the rela-
tionship between reproductive energy and stable iso-
topic values and fatty acid profiles. These analyses will 
allow for a more comprehensive understanding of the 
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life-history strategy in squid species and demonstrate 
the potential application of these methods to other 
semelparous animals in nature.

Results
The reproductive system of I. argetinus increases 
dramatically once maturation commences [26], therefore 
we selected 68 female specimens at maturity stages 
from physiologically maturing (stage III) to spawning 
(stage VI) after the scales proposed by ICES [37] and 
Lin et  al. [38], for reproductive energy analysis, carbon 
(δ13C) and nitrogen (δ15N) stable isotope analysis, and 
fatty acids analyses. The sample size was 12 at stage 
III (physiologically maturing), 15 at stage IV (early 
physiologically mature), 15 at stage V (late physiologically 
mature), 15 at stage VI (functionally mature), and 11 at 
stage VII (spawning). The squids’ measured dorsal mantle 

length ranged from 184 to 262  mm and weighed body 
mass from 129 to 374  g. Both mantle length and body 
weight exhibited unimodal distribution (Additional file 1: 
Fig. S1a–b), indicating that the squids were from a single 
population stock [26]. Body weight was significantly 
correlated with mantle length, with a power function 
W = 0.00013 × L2.66 (r2 = 0.67, p < 0.05; Additional file  1: 
Fig. S1c). There were no significant differences in mantle 
length or body weight among maturity stages (mantle 
length, F = 0.92, p = 0.46; body weight, F = 1.10, p = 0.37; 
Additional file 1: Fig. S2).

Reproductive energy
The energy density of ovary, nidamental glands and ovi-
duct eggs (henceforth “eggs”) was determined using an 
automatic isoperibol calorimeter. The average energy 
density over all maturity stages was 23.44 ± 0.89 kJ/g dry 
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mass for ovaries, 25.38 ± 0.40 kJ/g dry mass for eggs, and 
19.93 ± 0.48 kJ/g dry mass for nidamental glands, respec-
tively. Energy density in the ovary increased significantly 
with maturation (F = 12.57, p < 0.05). Greater energy 
density within ovaries was observed at stages IV-VI; 
while both eggs and nidamental glands remained rela-
tively constant (Fig. 2a–c). The reproductive energy, esti-
mated as the sum of the energy accumulated in the ovary, 
nidamental glands and eggs, increased significantly 
with maturation (F = 30.31, p < 0.05), with a five-fold 
increase seen from stage III (74.12 ± 31.07 kJ) to stage VI 
(372.79 ± 82.85 kJ) (Fig. 2d).

Stable isotopes
The δ15N values of the ovary were determined from 13.03 
to 16.64 ‰, and exhibited a significant increase trend 

with maturation (F = 7.77, p < 0.05), reaching a peak value 
of 15.05 ± 0.68 ‰ at stage VI (Table 1; Fig. 3a). However, 
the increase of δ15N values by maturity stage was not 
equal to a typical enrichment of about 3‰ per trophic 
level [33]. The δ13C values varied from −  18.03‰ to 
− 15.71‰, but did not vary significantly between matu-
rity stages (F = 0.71, p = 0.58), with an overall mean value 
of − 17.26 ± 0.59 ‰ (Table 1; Fig. 3b).

Both δ15N and δ13C values showed greater variability 
(standard deviations [SD]) with maturation (Table  1). 
The corrected standard ellipse area (SEAc), calculated as 
the standard ellipse area of isotopic covariance matrix 
corrected by sample size using Bayesian approach [39], 
ranged from 0.57 at stage III to 1.32 at stage VI (Table 1) 
and revealed the increase of trophic niche width with 
maturation. In addition, the Bayesian standard ellipse 
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Fig. 2  Distribution of energy density and reproductive energy by maturity stages for Argentinean shortfin squid. a, ovary energy density; b, energy 
density of oviduct eggs; c, energy density of nidamental glands; d, reproductive energy, estimated as the sum of the energy accumulated in ovary, 
nidamental glands and oviduct eggs. The boxplot horizontal line and grey solid point respectively denote the median and mean, while upper and 
lower hinges respectively represent the 25th and 75th percentiles. The maturity stages were followed the scale proposed by ICES [37] and Lin et al. 
[38]: III physiologically maturing, IV–V, physiologically mature, VI, functionally mature, and VII, spawning. The sample size by maturity stage was 12 at 
stage III, 15 at stage IV, 15 at stage V, 15 at stage VI, and 11 at stage VII
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area (SEAb), a posterior estimate of isotopic matrix using 
the Bayesian approach [39], was significantly different 
between maturity stages (Kruskal–Wallis, χ2 = 95.51, 
p < 0.05; Fig. 3c), further revealing the differences in the 
isotopic niches for the squids between maturity stages. 
The overlap in the isotope niches was estimated as the 
ratio of overlap proportion and the sum of the non-over-
lapping area between each consecutive SEAc [39]. This 
ellipse plots with 40% Bayesian credible intervals was 
almost separated between stages III and IV however, was 
obvious overlap after reaching stage IV, with the largest 
overlap occurring between stages IV and V (Table  1). 
This observation was confirmed by the overlap of the 
SEAc of isotopic data for each maturity stage (Fig. 3d).

Fatty acid profiles
A total of 28 fatty acids (FAs) were determined in the 
squid’s ovaries, 14 of which had relative mean values 
greater than 0.5% (Additional file  1: Table  S1). Total 
content of fatty acids (total FAs) increased significantly 
from stages III–IV, and the 14 fatty acids accounted 
for 90.06% ~ 97.97% of total FAs, with an average 
97.04 ± 1.34%. Nine out of the 14 FAs showed signifi-
cant differences in the relative amounts between matu-
rity stages, where an increasing trend was found for 14:0 
(F = 20.41, p < 0.05), 20:2 (F = 4.17, p = 0.006), 20:3n3 
(F = 3.08, p = 0.024), 20:4n6 (F = 4.48, p = 0.004) and 
20:5n3 (F = 3.20, p = 0.028), a decreasing trend for 18:0 
(F = 4.31, p = 0.005), 18:1n9 (F = 3.53, p = 0.013) and 20:1 
(F = 18.37, p < 0.05), and an increase for 16:0 from stages 
III–VI (F = 18.18, p < 0.05), followed by a decrease at 
stage VII (Fig. 4a; Additional file 1: Table S1). The main 
fatty acid classes, namely saturated fatty acids (SFA), 

monounsaturated fatty acids (MUFA), and polyunsatu-
rated fatty acids (PUFA), were also significantly differ-
ent in the relative amounts between maturity stages. SFA 
increased from stages III–VI (F = 8.87, p < 0.05), PUFA 
showed an increasing trend with maturation (F = 3.56, 
p = 0.035), while MUFA decreased from stages III–VI 
(F = 14.15, p < 0.05) (Fig. 4b; Additional file 1: Table S1).

The analysis of similarity (ANOSIM) revealed that 
the overall FA profiles showed significant differences 
among maturity stages (global R-value = 0.35, p = 0.001). 
However, the significant differences were only found 
between stages III and IV (global R-value = 0.30, 
p = 0.004) and between stages VI and VII (global 
R-value = 0.37, p = 0.001) (Table  2). Non-metric 
multidimensional scaling (NMDS) results showed a large 
amount of overlap in the overall FA profiles between 
stages IV, V and VI, and obvious segregations between 
stages III and IV and between stages VI and VII (Fig. 4c). 
FAs 18:0, 18:1n9 and 20:1 exhibited the highest values 
at stage III, 14:0 and 16:0 at stages V and VI, and 20:2, 
20:3n3 and 20:4n6 at stage VII (Fig. 4c; Additional file 1: 
Table S1).

Relationship between reproductive energy and nitrogen 
isotopes and fatty acids
The relationships between reproductive energy and δ15N 
and FAs were separately carried out by applying linear 
mixed-effects models (LMMs), where mantle length and 
sea surface chlorophyll-a concentration were included 
as the explanatory variables, and maturity stage was 
included as a random effect to account for the poten-
tial effect caused by sexual development. Results from 
the LMMs revealed that the reproductive energy was 

Table 1  Stable isotopic metrics of Argentinean shortfin squid

SEAc, corrected standard ellipse area; non-overlap SEAc proportion, overlap as proportion of the sum of the non-overlapping SEAc between two consecutive maturity 
stages. The non-overlap SEAc proportion ranges from 0 (zero overlap in the isotopic niche widths between groups) to 1 (complete overlap in the isotopic niche widths 
between groups)

Maturity stage δ15N(‰) δ13C(‰) Isotopic niche width

Range Mean ± SD Range Mean ± SD SEAc Non-overlap 
SEAc 
proportion

III 13.03 to 14.33 13.73 ± 0.40 − 17.83 to − 16.75 − 17.34 ± 0.40 0.57

0.03

IV 13.71 to 15.87 14.64 ± 0.66 − 18.02 to − 15.9 − 17.32 ± 0.60 1.06

0.59

V 13.96 to 15.88 14.88 ± 0.61 − 18.03 to − 15.82 − 17.17 ± 0.70 1.18

0.46

VI 14.03 to 16.64 15.05 ± 0.68 − 17.99 to − 15.71 − 17.39 ± 0.68 1.32

0.35

VII 13.50 to 15.70 14.93 ± 0.71 − 17.45 to − 15.93 − 17.03 ± 0.42 1.00

Pooled 13.03 to 16.64 14.69 ± 0.75 − 18.03 to − 15.71 − 17.26 ± 0.59
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positively correlated with δ15N values (t-value = 3.02, 
p = 0.004; Fig.  5a; Additional file  1: Table  S2). Similarly, 
the reproductive energy was also positively related to the 
relative amounts of 14:0 (t-value = 2.97, p = 0.005), 18:0 
(t-value = 2.13, p = 0.04), 20:4n6 (t-value = 2.60, p = 0.01) 
(Fig.  5b–d, Additional file  1: Table  S3), where 18:0 is 
assumed to be the trophic marker for herbivores [40], 
and 20:4n6 for top predators [41]. These findings suggest 
that the larger amount of reproductive energy is obtained 
by increasing intake of higher trophic prey items. How-
ever, there was no significant relationship between repro-
ductive energy and mantle length (p > 0.05; Additional 
file 1: Table S2, S3). The reproductive energy was also not 
significantly correlated with the sea surface chlorophyll-
a concentration (p > 0.05; Additional file 1: Table S2, S3), 
although the sea surface chlorophyll-a concentration in 

the sampling area varied significantly between weeks 
(F = 850.69, p < 0.05; Additional file 1: Figure S3).

Discussion
Reproductive energy
The energy density of the squid ovary increased as matu-
ration progressed, while both eggs and nidamental glands 
were relatively stable throughout sexual maturation. This 
pattern is consistent with previous research conducted 
on the same species [28, 29] and other squid species (e.g. 
D. gigas [30]; S. oualaniensis [31]). The increase of energy 
density in the ovary may be related to yolk production 
during ovarian development [42]. Stable energy density 
of eggs is an indication of similar quality egg production, 
which must be of great importance for these semelparous 
species to maximize reproductive success [10]. Conse-
quently, the reproductive energy increased significantly 
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with maturation (Fig.  1d), most likely in relation to the 
enlargement of reproductive systems [38]. More impor-
tantly, the increase of reproductive energy should be 
considered as the increase of energy demand for repro-
duction. Illex argentinus has been found to significantly 
increase energy allocation to reproduction once matura-
tion commences [28, 29]. Many monocyclic species have 
also been reported to direct large amounts of energy to 
reproduction at the onset of maturation [12, 43, 44]. This 
is most likely an evolutionary selection given the semelp-
arous nature of the species and the need to maximize 
reproductive success.

Fig. 4  Fatty acid profiles of Argentinean shortfin squid. Values were determined from the squid’s ovary. a, relative amounts (mean ± SD) of selected 
fatty acids with maturation; b, relative amounts (mean ± SD) of main fatty acid classes. SFA, saturated fatty acids; MUFA, monounsaturated fatty 
acids; PUFA, polyunsaturated fatty acids; c non-metric multidimensional scaling (NMDS) of the fatty acid composition with maturation with overlaid 
vectors of individual fatty acids detected significant differences between stages. Maturity stage scale and sample size as presented in Fig. 2

Table 2  Results of analysis of similarities (ANOSIM) for the 
differences in fatty acid composition between two consecutive 
maturity stages for Argentinean shortfin squid

The R value of ANOSIM ranges from − 1 to 1, with value close to 1 indicating 
high difference between groups, while value close to 0 indicates high similarity

Maturity stage R value p

III versus IV 0.30 0.004

IV versus V 0.14 0.046

V versus VI 0.03 0.228

VI versus VII 0.37 0.001

Pooled 0.35 0.001
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Energy acquisition strategy for reproduction
The squid adopts an energy acquisition strategy where 
individuals feed on higher trophic prey items leading 
to an increase of energy in reproductive organs during 
maturation. Such phenomenon is supported by the 
results of LMMs that were performed the reproductive 
energy on either the nitrogen isotopes or the selected 
FA profiles, where the reproductive energy is positively 
related to δ15N values (Fig. 5a), and the relative amounts 
of carnivorous fatty acid tracer 18:0 and top predator 
fatty acid tracer 20:4n6 (Fig.  5b–c). Given the fact 
that energy allocation to reproduction is dramatically 
increasing once sexual development commences [26], 
the intake of higher trophic prey items is likely necessary 
to meet the energetic demand following the hypothesis 
that prey species at higher trophic position have a greater 
nutrient content [19].

The squid shifts feeding habits with maturation, espe-
cially during the course from stages III–IV, evidenced by 
the increase trend of δ15N values (Fig.  3a). Further evi-
dence can be provided by the fatty acids analyses (Fig. 4). 
The relative amounts of 16:0 and 20:5n3, dietary trac-
ers for carnivores [40, 45], increase along with matura-
tion, while the relative amounts of 18:0 and 20:1, tracing 
for herbivores [46], decrease after the onset of matura-
tion. Moreover, the relative amounts of 20:4n6, a tracer 
for top predator [41], also shows a statistically signifi-
cant increasing trend throughout sexual maturation. 

Since consumers are subject to biochemical limitations 
in biosynthesizing dietary fatty acids [34], it is reason-
able to expect that the squid may decrease the intake of 
prey species at lower trophic level, and turn to higher 
trophic preys after the onset of maturation. This finding 
is consistent with the results of stomach content analy-
ses where the squids change in diet composition as they 
grow, switching from crustaceans at small sizes to fishes 
and cephalopods at large sizes [47–50].

However, the squid does not shift prey items at a 
trophic level completely. The enrichment of δ15N values 
between each two consecutive maturity stages is not 
typically enriched by about 3‰ per trophic level [33]. 
By contrast, the variance of δ15N values at each maturity 
stage increased with maturation, being the greatest 
variance occurred just before spawning stage (Table  1). 
The Bayesian isotopic niche analyses confirmed that 
the squid at more advanced maturity stage has greater 
isotopic niche width, indicated by the increase of SEAc 
and SEAb (Table  1; Fig.  3c). Given the isotopic niche 
linking to prey [32], these observations indicate that the 
squid increases prey spectrum to meet energy demands 
for reproduction [26]. The maturing squids showed 
larger amounts of herbivorous FA tracers 18:0 and 20:1 
[46], while mature and spawning squids significantly 
increased the relative amounts of 16:0 and 20:4n6, both 
which have been used as indicators of carnivores and top 
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Fig. 5  Reproductive energy relation to nitrogen stable isotope ratio and selected fatty acids for Argentinean shortfin squid. Isotopic values and 
fatty acid profiles were determined from the ovary of Argentinean shortfin squid. Relationships between reproductive energy and nitrogen isotope 
ratio (a), relative amounts of 14:0 (b), 18:0 (c) and 20:4n6 (d). Estimate in the top-left corner depicts average fixed-effects exponent value; blue lines 
depict average model fits, with 95% confidence intervals in grey shading
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predators respectively [40, 41]. The results might expect 
that maturing squids primarily feed on herbivores, and 
mature and spawning ones switch to feed on carnivorous 
prey items. It is noted that the mature squids may prey 
on similar prey items, evidenced by the overlaps in 
the isotopic niche (Fig.  3d) and FA profiles (Fig.  4c). 
Comparing to small prey species, the one at higher 
trophic position has greater energy density [20, 21], and 
would improve the metabolic energy of consumers [22]. 
However, prey species at higher trophic position may 
perform better to avoid predation [23]. Consumers must 
trade-off energy acquisition and the cost of capturing 
prey [6]. Therefore, the squid may balance energy 
expenditure and gain to maximize energy intake through 
ontogenetic shift in diet, coupled with broadening prey 
spectrum.

The strategy of energy acquisition for reproduction is 
independent from body size that has been considered 
as an important factor linked to feeding ability [15, 25]. 
LMMs results indicated that reproductive energy was 
not correlated with mantle length (Additional file  1: 
Tables S2, S3). This seems contrast to previous reports 
that larger individuals invest much more reproductive 
energy [14], and many species do exhibit reproductive 
energy output scaling with body size [51]. However, 
most of the studies linearized reproductive investment 
to body size without considering the potential effects of 
maturity state. In squid species, notably, somatic growth 
is gradually decreasing after reaching maturation [10], 
while the reproductive system expands dramatically, 
especially during physiologically maturing stage [12]. 
Thus, the influence of body size on reproductive energy 
acquisition may become less important after the onset of 
maturation in squids.

Resource availability is also an important factor that 
influences consumer’s feeding habits [52, 53]. For squid 
species, many of them have been reported that feeding 
behavior is related to the availability of food resources 
[17, 53], potentially linking to their opportunistic life-
history and voracious foraging behavior [10]. In the 
present study, we observed significant variations in 
the weekly surface chlorophyll-a concentration in the 
sampling area (Additional file  1: Fig. S1), suggesting 
that the primary production are temporal variable [54]. 
Unexpectedly, the reproductive energy was not related 
to the surface chlorophyll-a concentration (Additional 
file  1: Tables S2, S3). The southwestern Atlantic system 
has high biological production because of the high 
variability of physio-chemical and biological attributes 
occurring at the shelf and slope water columns [55]. 
Therefore, the prey community can be resilient to the 
temporal change of productivity and maintain a status of 

dynamic equilibrium [56]. Indeed, the sampling stations 
were apparently not situated in water columns with high 
chlorophyll-a concentration (Additional file 1: Fig. S3a). 
This case can indirectly provide evidence to explain the 
non-significant relationship between reproductive energy 
and chlorophyll-a concentration.

Conclusion
The semelparous Argentinean shortfin squid invests large 
amounts of energy for reproduction during maturation. 
In order to meet the energy demand, the squid 
ontogenetically shifts feeding habits from lower to higher 
trophic prey items during maturation. However, the shift 
is not equal to a complete trophic level. Instead, the squid 
broadens the prey spectrum, coupled with increasing 
intake of higher trophic prey. Energy acquisition for 
reproduction was independent of body size and primary 
production. This strategy of energy acquisition for 
reproduction may be evolutionarily selected by the 
squid to maximize reproductive values by balancing 
energy intake and expenditure from foraging. To our best 
knowledge, this work is the first study that uses multiple 
techniques including energy density, stable isotopes and 
fatty acid biomarkers to investigate energy acquisition 
strategy among semelparous species. The results put 
forward our understanding of the squid’s life-history 
in terms of energy acquisition for reproduction. Future 
studies should aim to confirm whether the strategy 
identified in this study holds for other semelparous 
species, which have common monocyclic life-histories 
but can vary in breeding patterns and therefore, 
reproductive strategies.

Methods
Sampling region
The squid specimens were collected over the Patagonian 
shelf of the southwest Atlantic Ocean (Fig.  1). It is well 
known that the southwest Atlantic is characterized by the 
presence of the Brazil Current (BC), a southward-flowing 
warm western boundary current, and the northward-
flowing Malvinas Current (MC), in which both cur-
rents encounter at approximately 38°S [57]. Meanwhile, 
intense frontal transitions at various near shore locations 
and along the shelf break promote vertical circulations 
that inject nutrients into the upper layer, leading to the 
enhanced growth of phytoplankton [55]. Consequently, 
the waters along and across the shelf and slope are inhab-
ited by diverse organisms, including mammal, bird, fish 
and cephalopod species in all life stages [56].
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Specimens and process
Squid specimens were obtained from the catches of 
commercial jigging fishery that operated in the high 
seas of southwest Atlantic (61° 09′ W ~ 62° 53′ W, 46° 
08′ S ~ 47° 51′ S; Fig. 1) from January 8th to March 4th in 
2019. Specimens were randomly collected onboard, and 
frozen immediately at – 30 °C for laboratory experiments. 
After defrosted at room temperature in laboratory, each 
specimen was taken dorsal mantle length (ML) to the 
nearest 1.0  mm and body weight (BW) to the nearest 
1.0  g. Each specimen was dissected to identify sex and 
assigned a macro-scale maturity stage. The macro-scale 
maturity stage was after the scales proposed by ICES 
[37] and Lin et  al. [38]: I immature, II developing, III 
physiologically maturing, IV–V, physiologically mature, 
VI, functionally mature, VII, spawning, VIII, spent. 
152 specimens were sexed and assigned the maturity 
stages. Preliminary analysis indicated that about one 
fifth of the specimens were at stages I–II, another one 
fifth at stage III, and the remaining at stages IV–VII. No 
spent individuals were found, probably because spent 
individuals die shortly after spawning [58].

Since the squid develops reproductive system from 
stage III [10], we randomly selected 68 female specimens 
at maturity stages from III to VII for energy density analy-
sis, stable isotope analysis and fatty acids analyses (12 at 
stage III, 15 at stage IV, 15 at stage V, 15 at stage VI, and 
11 at stage VII). For each selected specimen, the ovary, 
nidamental glands and eggs were taken and lyophilized to 
constant weight in a freeze-dried chamber (Scientz-10 N 
lab lyophilizer, Ningbo Scientz Biotechnology Co., LTD.). 
The dry weight of each tissue was weighed to the nearest 
0.1 mg, and then ground into fine powder using Scientz-48 
grinder (Ningbo Scientz Biotechnology Co., LTD.).

Reproductive energy
An approximately 1.5–4.0 g of powdered tissue was used 
to determine the energy density (kJ  g−1) of the ovary, 
nidamental glands and eggs of each squid specimen, 
separately, using an automatic isoperibol calorimeter 
(Model 6400, Parr Instrument Company, Moline, IL, 
USA). The powdered tissue was gently added to a 
capsule and then placed into the capsule holder of the 
calorimeter, which allows for automatically determining 
the energy density within several minutes.

The absolute energy (kJ) of a given tissue was calculated 
as the energy density multiplied by the dry tissue weight. 
Then, the reproductive energy was estimated as the sum 
of absolute energy of the ovary, nidamental glands and 
eggs.

Fatty acids analyses
An approximately 1  g of powdered ovary was used 
to extract lipids with a methanol: dichloromethane: 
water solvent mixture (20:10:8 by volume) according to 
Bligh and Dyer method [59]. The extracted lipids were 
stored at − 20  °C in methanol: dichloromethane (2:1 by 
volume) with 0.01% butylated hydroxytoluene (BHT) as 
antioxidant for fatty acid methyl esters (FAME) analysis 
within 24–48  h. The lipid extracted tissue was recycled 
and lyophilized to constant weight for stable isotope 
analysis.

A modification of GAQSIQ method [60] was used to 
analyze the FAME of the squid’s ovary. The method has 
been successfully tested in soma, ovary and digestive 
gland samples of I. argentinus [35] and Dosidicus gigas 
[61]. FAME were determined using an Agilent 7890B Gas 
Chromatography (GC) coupled to a 5977A series Mass 
Spectrometer Detector (MSD, Agilent Technologies, 
Inc. USA), equipped with a fused silica 60 m × 0.25 nm 
open tubular column (HB-88: 0.20  μm, Agilent 
Technologies, Inc. USA). Individual FAME was identified 
by the retention times and mass spectra with a known 
concentration internal standard 19:0 (GLC 37, Nu-Chek 
Prep, Inc.). The separation was carried out with helium as 
the carrier gas, and a thermal gradient programed from 
125 to 250 °C, with the auxiliary heater at 280 °C.

Total content of fatty acids (total FAs) was determined 
as milligram per gram of dry mass (mg/g dry mass), 
based on the mass fraction of FAMEs relative to the 
internal standard 19:0 [60]. Individual fatty acid (FA) 
was expressed as percentage of total FAs. Individual 
fatty acid that accounted for less than 0.5% of the total 
FAs was excluded from statistical analyses below. The 
individual fatty acid was also grouped into saturated 
fatty acids (SFA), monounsaturated fatty acids (MUFA), 
and polyunsaturated fatty acids (PUFA), which were also 
expressed as percentage of total FAs.

Stable isotope analysis
Lipid fraction in soft tissues tends to be depleted in 13C 
isotope, and lipid extraction has become a standard 
procedure in stable isotope analysis [62, 63]. The lipid-
extracted ovary samples (see “Fatty acids analysis”) were 
used to determined carbon (δ13C) and nitrogen (δ15N) 
stable isotope values. A powdered sub-sample of ovary 
tissue (≈ 0.3 mg) was placed into tin capsule and analyzed 
in a SerCon Integra 2 integrated elemental analyzer 
and an isotope ratio mass spectrometer (EA-IRMS) at 
the Stable Isotope Core Laboratory in Third Institute of 
Oceanography (Ministry of Natural Resources, China). 
Isotopic values are reported in standard δ-notion in 
parts per thousand (‰), where δ13C or δ15N = [(Rsample/
Rstandard)  −  1] × 1000, with Rsample and Rstandard 
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representing the ratios of 13C/12C and 15  N/14  N of the 
sample and the standard reference material, respectively. 
The reference material was Vienna Pee Dee Belemnite 
(VPDB) for carbon and atmospheric nitrogen (N2) for 
nitrogen. The measurement errors were approximately 
0.02‰ and 0.02‰ for δ13C and δ15N, respectively.

Statistical analyses
Significant differences (p < 0.05) among maturity stages 
were tested for the tissue energy density, reproductive 
energy, stable isotopes, total fatty acids content and 
relative amount of individual fatty acid. All data were 
checked for normality of distribution with the one-
sample Kolmogorov–Smirnov test and for homogeneity 
of the variances with the Levene’s test [64]. When the 
normality was satisfied, one-way analyses of variance 
(ANOVA) was applied to determine the significant 
difference between maturity stages, followed by Tukey’s 
honestly significant post-hoc test. When normal 
distribution and/or homoscedasticity were not achieved, 
data were subjected to a Kruskall–Wallis nonparametric 
test and a Games–Howell post hoc test was performed 
[64].

To determine the energy acquisition strategy during 
maturation, we evaluated the ovary isotopic niche based 
on Bayesian inference, and assessed the similarity of ovary 
fatty acid profiles. The ovary isotopic niche can reflect the 
dietary niche characteristics of the squid [32], and the ovary 
fatty acid profiles can be used to evaluate the potential 
similarity of dietary items [34]. We calculated the isotopic 
niche widths for each maturity stage using Stable Isotope 
Bayesian Ellipses in R (SIBER, [39]), including the Bayesian 
estimate of standard ellipse area (SEAb), the corrected 
standard ellipse area (SEAc) and the isotopic niche overlap 
estimated as the ratio of overlap proportion and the sum of 
non-overlap areas between each consecutive SEAc (non-
overlap SEAc proportion) based on 1000 replications.

We applied analysis of similarity (ANOSIM) to examine 
differences in the overall fatty acid profiles between 
maturity stages. In addition, non-metric multidimensional 
scaling (NMDS) was applied to visualize the differences in 
the overall FA profiles. As individual FA was expressed as 
percentage of total FAs, a square-rooted transformation 
was used to avoid over-emphasis of extreme values [34]. 
A Bray–Curtis dissimilarity matrices was employed in the 
ANOSIM and NMDS [65]. The analyses were performed 
in the package ‘vegan’ in R platform [66].

We further applied linear mixed-effects models (LMMs) 
[36] to investigate the energy acquisition strategy for 
reproduction in I. argentinus. LMMs were respectively 
performed the reproductive energy on δ15N values and 
selected fatty acid profiles, using maturity stage to account 
for sexual development effects and unexplained differences 

among individuals from different maturity stages. The 
selected FA profiles were those FAs that were found 
significant differences between maturity stages. Log-
transformed mantle length of the squid and sea surface 
chlorophyll-a concentration (Chla) were also considered as 
explanatory variables to account for the effects of body size 
and primary production, respectively. The Chla data were 
downloaded from NOAA (https://​ocean​watch.​pifsc.​noaa.​
gov/​erddap/). To reduce the bias of daily variation, we used 
weekly Chla (Dataset ID: noaa_snpp_chla_weekly). LMMs 
were performed in the package ‘lme4’ in R platform [66].
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