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Abstract 

Background Experts use knowledge to infer the distribution of species based on fuzzy logical assumptions 
about the relationship between species and the environment. Thus, expert knowledge is amenable to fuzzy logic 
modelling, which give to propositions a continuous truth value between 0 and 1. In species distribution modelling, 
fuzzy logic may also be used to model, from a number of records, the degree to which conditions are favourable 
to the occurrence of a species. Therefore, fuzzy logic operations can be used to compare and combine models based 
on expert knowledge and species records. Here, we applied fuzzy logic modelling to the distribution of amphibians 
in Uruguay as inferred from expert knowledge and from observed records to infer favourable locations, with favour-
ability being the commensurable unit for both kinds of data sources. We compared the results for threatened species, 
species considered by experts to be ubiquitous, and non-threatened, non-ubiquitous species. We calculated the fuzzy 
intersection of models based on both knowledge sources to obtain a unified prediction of favourable locations.

Results Models based on expert knowledge involved a larger number of variables and were less affected by sam-
pling bias. Models based on experts had the same overprediction rate for the three types of species, whereas models 
based on species records had a lower prediction rate for ubiquitous species. Models based on expert knowledge 
performed equally as well or better than corresponding models based on species records for threatened species, 
even when they had to discriminate and classify the same set of records used to build the models based on species 
records. For threatened species, expert models predicted more restrictive favourable territories than those predicted 
based on records. Observed records generated the best-fitted models for non-threatened non-ubiquitous species, 
and ubiquitous species.

Conclusions Fuzzy modelling permitted the objective comparison of the potential of expert knowledge and incom-
plete distribution records to infer the territories favourable for different species. Distribution of threatened spe-
cies was able to be better explained by subjective expert knowledge, while for generalist species models based 
on observed data were more accurate. These results have implications for the correct use of expert knowledge 
in conservation planning.

Keywords Amphibians, Incomplete records, Favourable areas, Fuzzy consensus, Non-observed species, Potential 
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Background
The status of species presence in a territory is usually 
subject to doubt [1]. This is mainly due to poor con-
ducted sampling and to the dynamic nature of species 
distributions [2]. Imprecise knowledge of ranges occu-
pied by species can lead to erroneous inferences about 
the species-environment relationship [3], which may 
have a long-term impact on biodiversity conservation 
[4]. However, at least part of the response of species to 
environmental conditions can be analysed based on the 
locations where they have been recorded; such results 
may then be used to infer the possible distribution of 
species in other locations with similar conditions [5, 6].

Species distribution modelling has been used to 
objectively evaluate the potential of areas to be occu-
pied by species [5, 7]. This potential is typically 
established according to the species-environment 
relationship, which can be inferred from known spe-
cies occurrence data [2, 5, 8]. Experts on a species in 
a particular territory also tend to use their expertise 
to subjectively infer the wider distribution of species 
in a territory, typically at the country or regional level. 
Experts’ experience and knowledge of the biology of 
species are used to define and review the distribution 
of a species, thus improving the available information 
[9]. Expert-derived distribution maps may be com-
pared and combined with distribution models based 
on recorded data to improve model outputs, although 
procedures through which to do this have only recently 
begun to be explored [9–11].

In Uruguay, recorded species distribution data, 
although generally incomplete, is mainly available in sci-
entific collections [12, 13], scientific publications [14–19], 
in the Global Biodiversity Information Facility [20], or in 
the Biodiversidata database [13, 21]. Amphibians are one 
of the taxa that remain poorly characterized in Uruguay 
[18] and are one of the most threatened groups on the 
planet [22, 23]. It is challenging to perform effective sam-
pling of amphibians because of their two-phase life cycle, 
both phases of which are affected to varying degrees by 
local environmental fluctuations. Many of these spe-
cies also have a crepuscular lifestyle, have cryptic colour 
patterns, live underground, or can only be found during 
specific seasons or under particular weather conditions 
[24]. Maneyro & Carreira [17] published a field guide to 
Uruguayan amphibians in which they presented the areas 
they considered to be occupied by each species according 
to their expert knowledge. These expert-defined areas are 
implicitly derived from fuzzy hypotheses about the rela-
tionship between species and the environment inferred 
from direct observation of species in their habitats. Thus, 
fuzzy logic may be appropriate for formally analysing 
these inferences.

Fuzzy logic was introduced by Zadeh [25] as a many-
valued logic in which propositions have a truth value 
that varies in degree from 0 (completely false) to 1 (com-
pletely true). This logic is particularly useful for formally 
analysing the kinds of messages involved in human lan-
guage and thinking [26]. Consequently, fuzzy logic may 
be used to make experts’ assumptions more formally 
explicit, which could help to more objectively define 
environmental conditions that are considered as favour-
able for a species according to expert knowledge. Fuzzy 
logic may also be used to objectively model on the basis 
of an incomplete number of records, the degree to which 
conditions are favourable for the presence of a species in 
a territory in which the species has not yet been found [5, 
27]. Specifically, favourability is a mathematical function 
that estimates, based on the probability of occurrence 
and species prevalence, the degree to which environmen-
tal conditions are favourable for a species’ occurrence in 
an area. With these fuzzy favourability values, it is pos-
sible to perform fuzzy logic operations that can be used 
account for the uncertainty inherent in nature, in which 
conditions are only ever partially favourable for the 
occurrence of a species, into species distribution models 
[6, 8, 28].

The application of fuzzy logic modelling to experts’ 
inferences and to occurrence records places both kinds of 
data within the same conceptual framework. It also yields 
commensurable degrees of affiliation with a fuzzy set of 
locations with favourable conditions for a species accord-
ing to the two datasets. In addition, fuzzy logic opera-
tions may be used to compare and combine both kinds 
of models once they are expressed in commensurable 
favourability units.

The aim of this study was to test the capability of fuzzy 
logic tools to compare and combine the distribution of 
species inferred from expert criteria and from incomplete 
records of species distribution. This may have implica-
tions for the better use of expert knowledge in conser-
vation planning and for identifying the most favourable 
conditions and territories for species.

Materials and methods
Study area and species distribution data
This study was carried out in Uruguay, which is located 
between 30° to 35° south latitude and 53° to 55° west 
longitude, lies entirely within the temperate zone and, 
according to Olson et  al. [29], is included in the Uru-
guayan savanna ecoregion. It has low orography, with 
average altitudes not exceeding 514  m above sea level, 
and a wide coastline on the Atlantic Ocean (more than 
150 km; see average altitude map in Fig. 1). The proxim-
ity to the sea regulates the average annual temperature 
(approximately 17.5 °C) and precipitation varies annually 
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between 1000 and 1700  mm [30] (see annual precipita-
tion map in Fig. 1). Uruguay is located at a biogeographic 
crossroads created by the influence of various biotas [31].

The country has high amphibian species richness, with 
48 native species (one gymnophion, 47 anurans), and 
an invasive exotic anuran (Lithobates catesbeianus). As 
in other regions of the world, amphibians are in decline 
[22, 23], with 12 species under some category of threat 
[18] (Table S1 in Additional file 1) and seven considered 
as almost threatened, not evaluated, or with insufficient 
data [18, 32]. Recently, amphibian species nomenclature 
was revised and updated (see [33] for details).

To compare species records and maps derived from 
expert knowledge, an operational scale of resolution 
capable of reconciling the different precisions of species 
records and expert distribution maps must be used. The 
spatial precision of expert maps is usually unknown [34, 
35], but generally considered to be broad, in the range 
of 100–200 km [36]. Species distribution records have a 

higher precision, but a common intermediate precision 
scale to assess the two types of data in a commensu-
rate had to be defined. We used a grid divided Uruguay 
country into 10  km × 10  km cells (total: 1887 grid cells; 
Fig. 1). This is in line with methods used in biogeography 
to identify the best grid for biogeographical studies [37]. 
We verified the recorded or expert-inferred presence of 
each amphibian species in each grid cell. To do this, we 
reviewed two types of information sources: distribution 
data recorded in the databases of scientific collections, 
and expert criteria, understood as the distribution maps 
derived from expert knowledge of the species’ natural 
history. Regarding the recorded distribution, informa-
tion on the geo-referenced occurrences of the species 
was extracted from the amphibian collection database of 
the Faculty of Sciences of the University of the Republic 
of Uruguay [21] and from the work of Núñez et al. [12]. 
Thus, grid cells with at least one record were considered 
as indicating species presence and the rest as absence. 

Fig. 1 10-km × 10-km grid cells of Uruguay and situation of Uruguay within South America. As examples, the display of the values of two 
explanatory variables on this grid is shown
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Distribution according to expert criteria were taken from 
the guide to amphibians in Uruguay [17]. In this manner, 
we considered the grid cells totally or partially contained 
in the range established by the experts for each species 
as grid cells with presence of the species. The remaining 
grid cells were treated as absences. We divided species 
into three categories to compare how models based on 
species records or expert knowledge performed in each 
category: threatened species (hereafter T), species con-
sidered by experts to be present throughout the study 
area (ubiquitous species, hereafter U), and non-threat-
ened, non-ubiquitous species (hereafter NtNu).

Environmental predictor variables
For predictors, we used a set of 44 variables linked to spa-
tial location (combination of longitude and latitude) and 
to the following eight environmental factors: topography 
(four variables), climate (22 variables), vegetation (one 
variable), geography (one variable), hydrology (two varia-
bles), land cover (five variables), lithology (four variables) 
and human activity (four variables). These are the fac-
tors that, according to theory, more likely affect the spe-
cies analysed at the spatial resolution of our study [38]. 
Table 1 shows the details of variables and their sources. 
Presence/absence of each amphibian species and the val-
ues of the predictors variables were extracted for each 
10-km × 10-km grid cell and stored in a geo-referenced 
database implemented in a Geographical Information 
System using QGIS software [39].

Regarding the spatial structure of the distribution data, 
a polynomial trend-surface analysis [40, 41] was applied 
using the longitude (Lo), latitude (La), the quadratic and 
cubic effect of both, and a combination of the above (Lo; 
La; Lo2; Lo3; La2; La3; LaLo; La2Lo; LaLo2). The spa-
tial variable included in the models for each species was 
a linear multifactorial combination (hereafter spatial 
logit) resulting from a linear logistic regression of the 
species presence/absence on the combination of these 
nine spatial terms of latitude and longitude. This spatial 
analysis determined whether the distribution of a species 
responded to spatial geographic trends related to histori-
cal events or more recent population dynamics, rather 
than to the environmental conditions of the habitat they 
occupy [41, 42]. For the other variables, we avoided the 
use of Principal Component Analysis or quadratic terms 
to keep the models simple and facilitate comparison with 
models based on expert knowledge, as such models are 
usually based on a simpler relationship between the spe-
cies distribution and environmental conditions.

Favourability models
To avoid excessive multicollinearity in the models, 
we tested pair-wise correlations between non-spatial 

variables using the Spearman coefficient r. When two 
variables had a correlation value of r > 0.75, we only 
retained the variable that the expert considered more 
relevant regarding amphibians, as this option facilitated 
the comparison of the explanatory capacity of models 
based on expert knowledge and on species records. This 
procedure reduced the number of potential predictor 
variables to 30 (Table 1). For each species, we then per-
formed bivariate logistic regression models of the species 
distribution with each of these variables to obtain a yet 
smaller subset of significant predictors, according to the 
Rao’s score test, for each species. If no predictor had a 
significant relationship with the distribution of the spe-
cies, then no model was produced for the species and 
source of data.

To minimize the risk of Type I errors in the modelling 
process due to the number of predictors, we also con-
trolled for the false discovery rate (FDR) [43] for each 
species, retaining only those predictor variables that were 
significant under an FDR of q < 0.05.

Then, we performed an ensemble multivariate for-
ward–backward stepwise logistic regression of pres-
ences/absences of each species on their corresponding 
spatial variable and reduced set of environmental vari-
ables to obtain probability values (P) of the species’ pres-
ence in every grid cell according to the formula:

with e being the base of the natural logarithms and y the 
logit function

where, α is a constant and β1, β2,…, βn are the coefficients 
of the n environmental predictor variables  x1,  x2,…,  xn (see 
details in Acevedo & Real [5] and Real et al. [27]). Vari-
ables were included according to the importance of their 
relationship with species distribution, and redundancy 
was avoided by verifying at each step that each new vari-
able added significant new information.

Subsequently, favourability values were calculated from 
the probability values obtained by logistic regression 
according to the formula:

where F is the environmental favourability (between 0 
and 1), P is the probability of occurrence given by the 
multivariate logistic regression, n1 is the number of pres-
ences, and n0 is the number of absences [27]. Thus, when 
the number of presences and absences is the same, F = P, 
whereas when the number of absences is greater than 
the number of presences, F > P, and when the number of 
absences is lower than presences F < P (which is rarely 

P = ey/ 1+ ey ,

y = α + β1x1 + β2x2 + β3x3 + · · · + βnxn

F = [P/(1− P)]/[(n1/n0)+ (P/[1− P])]
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Table 1 Explanatory variables analysed during the modelling process and their source. Variable names (second and forth columns), 
their codes (first and third columns) and factors grouping them (inserted sections). The resolution of the variables when coming 
from a raster are indicated in brackets next to the factor in which are grouped, in italics. The codes of the variables selected after the 
multicollinearity evaluation are shown in bold

Sources:

(1) Spatial variables, latitude, and longitude, were generated using the vector geometry tools of QGIS (http:// www. qgis. org) software: (a) "centroids of polygons" was 
used to calculate the centroid of each grid cell was calculated; and (b) "Export/Add columns of geometry" was used to express the length and latitude values (1984 
World Geodetic System) assigned to each centroid (WGS84)

(2) United States Geological Survey (1996). GTOPO30. Land Processes Distributed Active Archive Center. EROS Data Center: https:// lta. cr. usgs. gov/ GTOPO 30. (accessed 
April 2016)

(3) Ceroni (2008) from DNM-INIA. Monthly data series for 30 years for Uruguay (from 1980 to 2009). We calculated the bioclimatic variables (BIO1–BIO19) following the 
proposal used in WorldClim (Fick & Hijmans, 2017)

(4) https:// www. vito- eodata. be: from SPOT-VEGETATION – S10 NDVI

(5) Generated using QGIS (http:// www. qgis. org) software by calculating the average distance from the centroid of the grid cell to the coastline

(6) United States Geological Survey (2006). HydroShed. Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales. Available at: http:// 
hydro sheds. cr. usgs. gov/ index. php/ (accessed May 2016)

(7) GlobCover (2009). Global land cover map. Available at: http:// due. esrin. esa. int/ page_ globc over. php (accessed April 2016)

(8) Panario & Gutiérrez (2011). Mapa de ambientes: Cartografía implementada en un SIG. In: Mapa de Ambientes de Uruguay y Distribución potencial de especies, 
Convenio MGAP/PPR-CIEDUR, Montevideo

(9) Gridded Population of the World (GPWv4) (2010). Socioeconomic Data and Applications Center (SEDAC). A Data Center in NASA’s Earth Observing System Data and 

Code Variables Code Variables

Spatial

 YSp Spatial logit (linear polynomial combination of Latitude (°N) and Longitude (°E) from the spatial logistic regression)(1)

Topography (1 km × 1 km of original resolution)

 A Average altitude (m)(2) S Slope (◦) (calculated from Altitude)

 Ori-NS Orientation; degrees of exposure NS (calculated from Slope) Ori-EW Orientation; degrees of exposure EW (calculated 
from Slope)

Climatic (1 km × 1 km of original resolution)

 BIO1 Average annual temperature (°C)(3) BIO11 Mean annual temperatures of the coldest quarter (°C)(3)

  BIO2 Mean diurnal range temperatures (°C)(3) BIO12 Annual precipitation (mm)(3)

  BIO3 Isothermality  (BIO2/BIO17) (*100) (°C)(3) BIO13 Precipitation of the wettest month (mm)(3)

  BIO4 Seasonality of temperatures (°C)(3) BIO14 Precipitation of the driest month (mm)(3)

  BIO5 Maximum temperatures of the warmest month (°C)(3) BIO15 Seasonality of precipitation (mm)(3)

  BIO6 Minimum temperatures of the coldest month (°C)(3) BIO16 Precipitation of wettest quarter (mm)(3)

 BIO7 Annual temperature range  (BIO5-BIO6)(3) BIO17 Precipitation of dry  quarter(3)

  BIO8 Mean annual temperatures of the wetter  quarter(3) BIO18 Precipitation of warmest  quarter(3)

  BIO9 Mean annual temperatures of the dry  quarter(3) BIO19 Precipitation of coldest  quarter(3)

  BIO10 Mean annual temperatures of the warmest  quarter(3) PMax Maximum average precipitation in 24 h (mm)(3)

 BhPri Spring water balance (mm)(3) ETR Monthly real evapotranspiration (mm)(3)

Vegetation (1 km × 1 km of original resolution)

 NDVI Index of  greenness(4)

Geography

 DistCost Distance to coast (km)(5)

Hydrology

 DistRiver Minimum distance to rivers (km)(6) LonRiver Longitude of rivers (km)(6)

Land use

 Forests Forests (%)(7) Reforests Reforestation (%)(7)

 NatField Natural field (%)(7) Crops Crops (%)(7)

 Wetland Wetland (%)(7)

Lithology

 DepthSoil Depth of  soil(8) TextSoil Soil  texture(8)

 RockySoil Rocky  soil(8) FloodSoil Flood  soil(8)

Human activities (1 km × 1 km of original resolution)

 PobDen Population  density(9) DistUrban Minimum distance to the main urban centers (Km)(10)

 DistRoad Minimum distance to paved roads (km)(11) DistUnpavRoad Distance to unpaved roads (km)(11)

http://www.qgis.org
https://lta.cr.usgs.gov/GTOPO30
https://www.vito-eodata.be
http://www.qgis.org
http://hydrosheds.cr.usgs.gov/index.php/
http://hydrosheds.cr.usgs.gov/index.php/
http://due.esrin.esa.int/page_globcover.php
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the case). The favourability value F = 0.5 corresponds to a 
probability value equal to the prevalence of the species in 
the sample, i.e., the value expected under neutral condi-
tions over the entire area of study. Thus, the favourability 
values represent the contribution of the response of the 
species to the local environmental conditions and of its 
particular history and population dynamics to the prob-
ability of occurrence. It should be noted that local prob-
ability depends on local favourability and on the overall 
prevalence of species in the dataset. Therefore, favour-
ability is a commensurate unit that can be used to com-
pare and combine models of species that differ in their 
prevalence [44, 45].

A favourability function can be considered to be a 
membership function of each locality in the fuzzy set of 
localities favourable for the occurrence of species. This 
matches the definition of the membership function typ-
ical of fuzzy sets, which is the basis of fuzzy logic [25]. 
This logic asserts that the membership of any element 
in a set is neither completely false nor completely true; 
instead, each element is assigned a real number from 0 to 
1 representing the degree of membership in the fuzzy set. 
After applying the favourability function, each grid cell 
corresponds to a degree of membership, ranging from 0 
to 1, to the set of favourable localities for the presence of 
each amphibian species. For each grid cell, the favour-
ability function can identify dark biodiversity or the 
degree of favourability for non-observed species [6]. It 
can also combine favourability models using fuzzy logic 
operations [44–47].

The above-mentioned procedure was applied to the 
presence/absence datasets derived from the species 
ranges proposed by experts and to those derived from 
recorded distributions. In this manner, favourability val-
ues were obtained based on expert knowledge  (FE) and 
recorded distributions  (FR).

All statistical analyses were conducted using the IBM 
SPSS Statistics V25 software. Finally, a cartographic 
favourability model was generated for each amphibian 
species according to both sources of data using ArcMap 
10.8 software.

Model evaluation
We used the area under the curve (AUC) of the receiving 
operating characteristic (ROC) [48, 49] to evaluate the 
ability of each favourability model, either based on spe-
cies records or on expert knowledge, to discriminate grid 
cells with at least one record from those with no record 

of the species. We evaluated the ability of each model to 
classify this dataset of recorded presences and absences 
based on a favourability threshold of 0.5 using sensitiv-
ity, specificity, under-prediction rate (UPR), over-predic-
tion rate (OPR) [50] and correct classification rate (CCR) 
[51]. We also compared the discrimination and classifi-
cation ability of the models for T species (N = 12), NtNu 
(N = 22), and U (N = 14), using the Kruskal–Wallis Test to 
separately test models based on species records and on 
expert knowledge. We also compared the number of vari-
ables and factors involved in the models, as well as the 
discrimination and classification ability of models based 
on species records and expert criteria using the Wil-
coxon signed-rank test for matched samples for the three 
groups of species separately.

Favourability values (F) represent the degree of mem-
bership in the fuzzy set of grid cells favourable for the 
occurrence of the species. Consequently, we obtained for 
each species a fuzzy set of grid cells favourable for the 
occurrence of the species according to expert criteria (E) 
with favourability values  FE, and another set according to 
the direct modelling of the recorded distribution data (R) 
with favourability values  FR. For each of these fuzzy sets, 
we computed cardinal, card (E) and card (R), which is the 
sum of all favourability values representing the size of the 
fuzzy set. We then computed the fuzzy entropy of each 
fuzzy set [26] as follows:

where S(E) is the entropy of E, S(R) is the entropy of R, 
and E′ and R′ are the complementary values of E and R, 
respectively, whose membership values in each grid cell 
are 1-FE and 1-FR, respectively. Fuzzy entropy is a value 
between 0 (minimum entropy) and 1 (maximum entropy) 
that represents the uncertainty associated with the spe-
cies distribution. Using the Wilcoxon signed-rank test 
for matched samples, we compared the fuzzy entropy of 
models based on species records and expert criteria for 
the three groups of species separately.

Combining fuzzy sets derived from records and expert 
criteria using fuzzy logic
These two fuzzy sets were combined using fuzzy logic 
tools [25]. Then, for each species, we calculated in each 
grid cell the degree of membership in the fuzzy union 
E ∪ R (maximum of  FE or  FR) and the fuzzy intersection 

S(E) = card (E ∩ E′/card (E ∪ E′)

S(R) = card
(

R ∩ R′
)

/card (R ∪ R′)

Information System (EOSDIS)—Hosted by CIESIN at Columbia University (accessed June 2016)

(10) Natural Earth Data. North American Cartographic Information Society (NACIS). Available at: http:// www. natur alear thdata. com/ (accessed April 2016)

(11) Digital Chart of the World. Available at: https:// world map. harva rd. edu/ data/ geono de: Digit al_ Chart_ of_ the_ World (accessed April 2016)

Table 1 (continued)

http://www.naturalearthdata.com/
https://worldmap.harvard.edu/data/geonode:Digital_Chart_of_the_World
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E ∩ R (minimum of  FE and  FR) of the two fuzzy sets as 
the consensus values of both models. E ∪ R represents 
the degree to which a location is considered favourable 
according to either expert criteria or the direct model-
ling of the records, whereas E ∩ R represents the degree 
to which a location is considered favourable using both 
expert criteria and direct modelling of the records. E ∪ R 
and E ∩ R were also fuzzy sets and we represented them 
cartographically and as computed card (E ∪ R) and card 
(E ∩ R).

We also obtained the fuzzy overlap values between E 
and R, which were values between 0 and 1 computed as:

To assess how much information R held about E, we 
used the fuzzy inclusion of E into R according to the 
equation provided by [52]:

which is a value between 1 and 0 that indicates the extent 
to which the set E is included in the set R. In this way, we 
computed I (R, E).

In all methodological procedures, we followed the rec-
ommendations of Sillero et al. [53].

Results
After accounting for multicollinearity among the original 
variables and controlling for FDR, a total of thirty predic-
tor variables belonging to the nine explanatory factors 
remained available for building the models. We did not 
obtain significant favourability models for species with 
ubiquitous distributions using expert inference, as the 
experts considered that these distributions covered all 
of Uruguay. We obtained significant favourability mod-
els for the rest of the included species using both expert 
criteria and recorded distributions (see the geographi-
cal representation of the models in maps of Figure S3 in 
Additional file 3).

Explanatory factor and variables in the models
The thirty variables available to build the models, and the 
nine consequent factors, were included in at least one 
significant distribution model. Relevant variables differed 
according to the two sources of information analysed. 
The expert-criteria-based models were significantly more 
complex, as they included between one and 16 variables, 
with a mean of 5.1 and 8.8 variables per model for threat-
ened and NtNu species, respectively, whereas the models 
based on recorded distributions included between one 
and eight variables, with a mean of 1.9 and 2.7 variables 
per model for T and NtNu species, respectively (Wil-
coxon signed-rank test significance was p < 0.05 for T 

O (E, R) = card (E ∩ R)/card (E ∪ R)

I (E, R) = card (E ∩ R)|/card (E)

species and p < 0.001 for NtNu species), and 5.8 variables 
per model for U species. Consequently, expert-criteria-
based models included more explanatory factors than 
record-based models.

According to the expert criteria, the three most rep-
resentative factors in the models were climatic (85% of 
models), topographic (74% of models) and spatial (62% 
of models), whereas according to the recorded distribu-
tion, the most representative factors were spatial (54% of 
models), land use (54% of models) and climatic (52% of 
models).

In models based on the recorded distributions, dis-
tances to roads and urban centres were included 24 times, 
and only once with a positive value, whereas in models 
based on expert criteria, these variables were included 20 
times, 10 which had positive values (χ2 = 9.147, p < 0.01).

Discrimination capacity of the models
In general, the models were able to discriminate pres-
ences from absences (see mean values of AUC in Table 2). 
Using both sources of data, all models of the 12 threat-
ened species showed outstanding discrimination accord-
ing to Hosmer & Lemeshow [48] (AUC > 0.9). Wilcoxon 
signed-rank test results showed no significant differences 
between them (Table  3), as both sources of data per-
formed equally well. However, some outlier models had 
lower discrimination in models based on species records, 
meaning that models based on expert knowledge dis-
criminated equally as well as or better than correspond-
ing models based on species records for T species (Figure 
S1 in Additional file  2). In fact, the Kruskal–Wallis test 
showed that three significantly different levels of discrim-
ination ability could be distinguished for models based 
on expert knowledge, while only two levels could be dis-
tinguished from models based on species records (one 
for ubiquitous species and one for the rest of species) (see 
Table 4, and Figure S1 in Additional file 2).

For the 22 NtNu species, 14 models based on species 
records showed outstanding discrimination capacity, 
with another five models showing excellent discrimina-
tion (0.8 < AUC < 0.9), while for models based on expert 
knowledge, only eight models demonstrated outstanding 
discrimination and six others excellent discrimination. 
This indicates that models based on species records out-
performed those based on expert knowledge (Wilcoxon 
signed-rank test significance p < 0.001).

Experts did not discriminate between the 14 ubiquitous 
species (AUC = 0.5), precisely because these species were 
considered by them to be present throughout Uruguay. 
However, 10 models based on species records for these 
species showed acceptable discrimination according 
to Hosmer & Lemeshow [48] (0.7 < AUC < 0.8) and one 
showed excellent discrimination (Wilcoxon signed-rank 
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test significance p < 0.001, i.e.); this indicates that models 
based on species records outperformed those based on 
expert knowledge).

Classification capacity of the models
Models, whether based on species records or expert 
knowledge, had three significantly different levels of 
classification ability, as measured with the CCR, and 
performed best for threatened species and worst for 
ubiquitous species (Table 4, and Figure S1 in Additional 
file  2). The CCRs of models based on species records 
were significantly higher than those of models based on 
expert knowledge for all but T species (Table 3). In fact, 
for T species, the mean CCR of models based on expert 
knowledge had a higher value, although not significantly 
higher, than that of models based on species records, 

even when there was a low outlier for a species (Tables 2 
and 3, and Figure S1 in Additional file 2).

Sensitivity values were generally high for all models 
(Table 2), but were highest for expert knowledge-based 
models in all three groups of species, with these dif-
ferences being significant only for U species (Table 3). 
However, while this higher sensitivity was obtained at 
the expense of a higher overprediction rate and a lower 
specificity for NtNu species, for T species, the higher 
sensitivity of expert knowledge-based models was 
obtained with (non-significantly) lower overprediction 
and higher specificity. Models based on species records 
had the same sensitivity level for T and NtNu species, 
with a lower level of sensitivity for U species (Table 4, 
and Figure S1 in Additional file  2). However, models 
based on expert inferences showed the same level of 
sensitivity for T and U species, which is notable given 

Table 2 Number of species (N), average discrimination (AUC or Area Under the Curve), and classification values (Sensitivity, Specificity, 
CCR or Correct Classification Rate, Und or Under Prediction Rate and Ove or Over Prediction Rate) for all species, and separately for 
Threatened species (T), non-threatened non-ubiquitous species (NtNu), and ubiquitous species (U) of the models based on expert 
criteria and on species records

According to experts

Species N AUC Sensitivity Specificity CCR Und Ove

T 12 0.98 (0.961–0.995) 0.97 (0.857–0.999) 0.94 (0.845–0.969) 0.94 (0.845–0.969) 0.00028 (0–0.00168) 0.90 (0.657–0.986)

NtNu 22 0.82 (0.475–0.999) 0.87 (0.361–0.999) 0.68 (0.211–0.998) 0.69 (0.24–0.998) 0.0044 (0–0.0266) 0.93 (0.636–0.992)

U 14 0.5 (0.5–0.5) 1 (0.999–0.999) 0 (0–0) 0.083 (0.0472–0.152) – 0.92 (0.848–0.953)

All species 48 0.767 (0.475–0.999) 0.93 (0.361–0.999) 0.55 (0–0.998) 0.58 (0.0472–0.998) 0.0021 (0–0.0266) 0.92 (0.636–0.992)

According to species records

Range N AUC Sensitivity Specificity CCR Und Ove

T 12 0.974 (0.90–0.997) 0.95 (0.75–0.999) 0.93 (0.870–0.970) 0.93 (0.871–0.970) 0.00020 (0–0.000609) 0.92 (0.738–0.988)

NtNu 22 0.92 (0.732–0.999) 0.86 (0.406–0.999) 0.82 (0.215–0.999) 0.82 (0.231–0.999) 0.0061(0–0.0284) 0.91 (0.667–0.992)

U 14 0.73 (0.659–0.873) 0.66 (0.534–0.854) 0.64 (0–0.758) 0.65 (0.170–0.762) 0.11 (0.00945–0.999) 0.85 (0.740–0.907)

All species 48 0.88 (0.659–0.999) 0.82 (0.406–0.999) 0.79 (0–0.999) 0.79 (0.170–0.999) 0.036 (0–0.999) 0.90 (0.667–0.992)

Table 3 Results of the Wilcoxon signed-rank test for matched samples comparing the discrimination (AUC: Area Under the Curve) and 
classification (Sensitivity, Specificity, CCR or Correct Classification Rate, Und or Under Prediction Rate and Ove or Over Prediction Rate) 
performance of models based on expert knowledge and models based on species records, for the three groups of species: threatened 
(T), non-endangered and non-ubiquitous (NtNu), and ubiquitous (U) species separately. St. = Standardized Wilcoxon signed-rank 
statistic. Sig. = Significance. Negative values of the statistics mean that models based on species records had higher values than those 
based on expert knowledge

T NtNu U

St Sig St Sig St Sig

AUC  − 0.471 0.638 (NS)  − 3.806 0.000141  − 3.296 0.000982

Sensitivity 0.405 0.686 (NS) 0.345 0.730 (NS) 3.296 0.000982

Specificity 1.412 0.158 (NS)  − 2.451 0.0142  − 3.180 0.00147

CCR 1.412 0.158 (NS)  − 2.451 0.014  − 3.296 0.001

Und 0.105 0.917 (NS)  − 1.306 0.191 (NS) – –

Ove  − 1.647 0.099 (NS) 2.289 0.0022 3.296 0.001
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that sensitivity for U species was always 1, with a lower 
level of sensitivity for the other species (Table  4, and 
Figure S1 in Additional file 2).

Mean specificity values were always lower than those 
of corresponding mean sensitivity (Table  2). Addi-
tionally, specificity values were significantly higher in 
record-based models than in expert-based models, 
except for threatened species (Table  3). Both types of 
models had three significantly different levels of speci-
ficity, being best for threatened species and worst for 
ubiquitous species (Table 4, and Figure S1 in Additional 
file 2).

Record-based models underpredicted equally for T 
and NtNu species, but significantly worse for U species, 
although always with low underprediction values. How-
ever, these models overpredicted less for U species than 
for the other two groups, which performed equally in 
this regard. Expert-criteria-based models demonstrated 
no underprediction rate for ubiquitous species (experts 
did not predict absence in any location) and underpre-
dicted significantly better for T species than for NtNu 
species. Models based on expert criteria displayed the 
same overprediction rate for the three groups of species 
(Table 4, and Figure S1 in Additional file 2).

Entropy of the models
The results of the Wilcoxon signed-rank test for matched 
samples showed that the mean entropy values were sig-
nificantly lower in models based on expert criteria for 
threatened species (0.009 vs 0.091, p < 0.01) and for NtNu 
species (0.035 vs 0.19, p < 0.001). The distribution models 
of the NtNu species had higher entropy values than those 
of T species with either the species records or the expert 
criteria. The models produced using species records for 
U species had the highest entropy values (0.518); individ-
ual entropy values can be seen in the maps of Figure S3 in 
Additional file 3.

Combination of the fuzzy sets derived from the models 
based on records and expert criteria
The results of combining the fuzzy set E and R derived 
from the models based on expert criteria and on recorded 
distribution, respectively, using their fuzzy union and 
intersection appear in maps by species of Figure S3 in 
Additional file 3. Figure 2 shows these results using three 
species as an example: Dendrosophus nanus as a T spe-
cies, Scinax uruguayus as an NtNu species and Scinax 
squalirostris as a U species.

Mean overlap values between fuzzy sets E and R were 
similar for the three groups of species: 0.34 for T species, 

Table 4 Results of the Kruskal–Wallis test comparing the discrimination and classification abilities for threatened species (T), non-
threatened and non-ubiquitous species (NtNu), and ubiquitous species (U), as well as for all groups together, of the models based on 
species records and on expert knowledge. AUC: Area Under the ROC Curve. Sens: Sensitivity. Spe: Specificity. CCR: Correct Classification 
Rate. Und: Underprediction Rate. Ove: Overprediction Rate

All Groups T-NtNu T-U NtNu-U

Est Sig Est Sig Est Sig Est Sig

AUC-records 29.654 0.001 8.568 0.088 (NS) 28.536 0.0001 19.968 0.0001

AUC-experts 31.447 0.001 11.068 0.026 29.750 0.0001 18.682 0.0001

Sens-records 24.981 0.001 6.386 0.194 (NS) 25.107 0.0001 18.721 0.0001

Sens-experts 16.097 0.001 9.33 0.035  − 7.375 0.129 (NS)  − 16.705 0.0001

Spe-records 27.416 0.001 11.409 0.023 28.357 0.0001 16.948 0.0001

Spe-experts 34.748 0.001 10.947 0.027 31.083 0.0001 20.136 0.0001

CCR-records 27.856 0.001 11.295 0.025 28.536 0.0001 17.240 0.0001

CCR-experts 33.954 0.001 11.011 0.028 31.125 0.0001 20.114 0.0001

Und-records 29.946 0.001  − 8.061 0.101 (NS)  − 27.905 0.0001  − 19.844 0.0001

Und-experts 18.340 0.001  − 11.455 0.010 – – – –

Ove-records 12.521 0.002 0.121 0.981 (NS) 15.810 0.0040 15.688 0.0010

Ove-experts 4.038 0.133(NS) – NS – NS – NS

Fig. 2 General scheme of the procedure used in three species as examples: Dendropsophus nanus (upper part) as a threatened species, Scinax 
uruguayus (middle part) as a non-threatened non-ubiquitous species, and Scinax squalirostris (lower part) as a ubiquitous species. From left to right: 
grid cells with presence according to both sources of information (upper maps: according to expert-criteria; lower maps: according to species 
records); the favourability models based on expert knowledge (E); the favourability models based on species records (R); their fuzzy union (E ∪ R) 
and their fuzzy intersection (E ∩ R)

(See figure on next page.)



Page 10 of 15Romero et al. Frontiers in Zoology           (2023) 20:38 

Fig. 2 (See legend on previous page.)
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0.37 for NtNu species and 0.42 for U species. For 17% 
of species, the spatial overlap between both alternative 
models was higher than 50%. Individual overlap value 
can be seen in the maps of Figure S3 in Additional file 3.

For threatened species, the mean inclusion of the fuzzy 
set E in the fuzzy set R was 0.66, whereas the mean inclu-
sion of R in E was 0.40. This suggests that expected dis-
tribution according to recorded data was larger than 
that expected according to expert knowledge. However, 
for NtNu species, the mean inclusion of E in R was 0.51, 
whereas the mean inclusion of R into E was 0.67, mean-
ing that, for these species, the distribution expected 
based on expert knowledge was larger. For U species the 
mean inclusion of E into R was 0.42, whereas the mean 
inclusion of R into E was 1, which was expected given 
that the distribution expected according to expert criteria 
included all of Uruguay, according to the experts.

Discussion
When studying the distribution of species, research-
ers attempt not only to describe, but also to understand 
and explain the distribution patterns of species. Classical 
mathematics can be used to this end through the appli-
cation of statistical methods and precise mathematical 
models in the study of species distributions [53]. Meth-
ods such as regression analysis, cluster analysis and 
probability theory, among others, can be used to analyse 
species presence and absence data, assess distribution 
patterns, and predict future distribution based on envi-
ronmental and geographic variables. The inclusion of 
fuzzy logic, which is derived from fuzzy set theory, pro-
vides species distribution models with a malleability par-
ticularly useful for dealing with the intrinsic uncertainty 
and vagueness of species distribution data [25, 26]. This is 
the case because information on the presence or absence 
of species can often be ambiguous due to the lack of pre-
cise data or natural variability in the distribution of the 
species. [3, 6]. Fuzzy logic allows this kind of ambigu-
ity to be addressed by working with partial truth values 
(about the species being present at a locality) or degrees 
of membership in a category (in a species’ range) [5, 25].

Human rationale, when used in the form of expert 
opinions on distribution data, for example, often yields 
uncertainty and incomplete information. As a result, it 
is common to work using degrees of confidence with 
the information provided. In this manner, although 
expert knowledge is grounded in empirical observa-
tions of species distribution, including both presences 
and absences recorded in field samples, experts also 
implicitly use informal fuzzy logic when construct-
ing or completing their mental model of a species’ 
occupied territory [25, 26]. Fuzzy logic allows formal 

handling of this uncertainty in human thinking, thus 
reflecting and making more explicit the lack of cer-
tainty in our statements and beliefs. Consequently, 
fuzzy logic allows work with commensurable catego-
ries of the uncertainty and vagueness inherent in the 
incomplete nature of species distribution data (species 
records) and in human thinking and beliefs (expert 
knowledge). Our work suggests that the subjective 
representation of species distribution by experts may 
reflect, perhaps unconsciously, perceived relationships 
between observed occurrences of species and environ-
mental conditions, and that these relationships may be 
objectively assessed using the formal analysis of fuzzy 
logic.

Our approach compared models based on both expert 
knowledge and species records by evaluating their 
capacity to discriminate and correctly classify species 
records; this differs from other previous approaches, 
which have evaluated the correctness of expert-defined 
ranges on the basis of their similarity with ranges 
derived from species distribution modelling [34]. The 
latter approach precludes the possibility that a model 
based on expert opinion can be better than one pro-
duced by mathematical modelling, whereas this is one 
of the main results in this work.

General assessments of the models
Although both kinds of models performed well, dis-
criminating and classifying the amphibian occurrences 
in Uruguay in an acceptable manner, models based on 
expert knowledge discriminated equally as well as or 
even better than corresponding models based on spe-
cies records for threatened species [12, 16–18]. This 
finding is particularly remarkable because models based 
on expert knowledge had to discriminate the same set 
of records that were used to build the models based on 
species records; it is striking that the former sometimes 
outperformed the latter. However, experts also used the 
same overprediction rate for the three types of species, 
i.e., when experts filled in the gaps within their mental 
fuzzy model of species distribution [34, 36], they did so 
equally for all types of species. Nonetheless, this kind 
of generalisation is useful for discriminating the dis-
tribution range of threatened species, while it yields 
uninformative models for widespread species. In other 
words, expert judgment, although consistent, is more 
useful when dealing with threatened, typically specialist 
species and less useful when dealing with more general-
ist species. Conversely, objective species distribution 
models were more valuable when dealing with gener-
alist species than when approaching specialist species 
that may be well understood by experts.
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Drivers of the geographical range of amphibians
These models, built on the basis of two different sources 
of information, incorporated factors that have been iden-
tified in the literature as significant drivers of amphibian 
distributions in various regions [23, 54, 55], including 
Uruguay [17, 56–58]. Furthermore, the factors better rep-
resented in the models from both sources of information 
were those that exerted influence on species distribution 
at large spatial scales (climate, topography, land uses and 
spatial location), ranging from landscape (10–200  km) 
to regional and national scales (from 200  km to greater 
than 2000 km) [38]. However, models based on the two 
sources of information differed in the number of fac-
tors and variables invoked to explain the distribution of 
amphibian species, as the models based on the knowledge 
of the experts were more complex. This was unexpected, 
given that the experts produced distribution ranges 
apparently simpler and more homogeneous than the dis-
tribution pattern of species records. However, despite the 
higher complexity of expert-based models, they resulted 
in models with lower entropy. Consequently, these mod-
els proposed more structured and organized patterns of 
favourable territories for each species, in comparison to 
models based on recorded distributions.

It is worth noting that human activity was identified 
as an explanatory factor in many of the models based on 
both information sources. When the human variables in 
the models indicated a higher favourably with proximity 
to roads and urban centres, it mostly revealed biases in 
the sampled records. This was the case because research-
ers tend to sample more frequently in accessible and 
well-connected territories [12, 13, 59, 60]. Expert-based 
models were less affected by this kind of sampling biases 
[59], which may be related to the generalization capacity 
of the experts allowing them to dodge the effects of the 
sampling bias. Consequently, expert knowledge may be 
most valuable in countries with high biodiversity, which 
are often undersampled, especially for taxa that are gen-
erally underestimated, such as amphibians [61].

Comparing the extent of models based on expert criteria 
and field records
Fuzzy overlap between the two kinds of models was nota-
bly low, in the range 0.34–0.42. This suggests that the 
areas considered as favourable for the species according 
to the two types of information differed substantially. 
The inclusion of one type of model int the other, i.e., the 
degree to which the model based on expert knowledge 
was a subset of the model based on species records and 
vice versa, differed according to the types of species ana-
lysed. For threatened species, the models based on expert 
knowledge were mostly a subset of the corresponding 

models based on species records, while the opposite 
occurred for non-threatened species.

Some authors have highlighted the tendency of experts’ 
fuzzy thinking to incorporate absences areas as favour-
able territories [34], rather than excluding presence 
records outside the predicted favourable areas. However, 
our results indicate that both types of models, whether 
based on expert thinking or on species records, did this, 
and that experts were less prone to this kind of overpre-
diction for threatened species, as specificity values were 
higher for expert-derived models of threatened spe-
cies. The fuzzy set of favourable territories derived from 
expert-based models encompasses the favourable ter-
ritories indicated by field records only for species with 
records extended over wide territories (NtNu and U). 
Although some authors have suggested that experts tend 
to think of the environmental territories occupied by 
these species as polygons that should include all known 
records [34, 36, 62–64], and that the set of favourability 
territories derived from records is more fitted to the spe-
cific environmental conditions highlighted by punctual 
records [34, 36], our results suggest that this rationale is 
only valid for the two types of non-threatened species. 
For threatened species (see species in Table S1 in Addi-
tional file  1), expert models predicted more restrictive 
fuzzy sets of favourable territories than those predicted 
by the records themselves. This could be attributed to the 
fact that threatened species generally exhibit a narrower 
distribution and, thus, occupy narrower environmen-
tal ranges [18, 19, 32, 33], as well as the fact that greater 
research effort and interest is typically dedicated to 
acquiring information on threatened species, which are 
usually better known by experts.

Bridging distribution gaps with expert knowledge 
and distribution modelling
For both kinds of models, the patterns of favourable 
zones completed the absence gaps between zones with 
presences [65]. Thus, the favourable zones were indica-
tive of a distribution that is less dispersed and discontinu-
ous than that suggested by the known records, and which 
fills gaps in the currently known distribution. This lack 
of knowledge concerning distributions could affect the 
conservation of these fauna groups. Therefore, although 
knowledge of species distributions has increased in 
recent decades [66], sampling efforts need to be strength-
ened in relation to large groups of fauna to obtain a more 
complete range of sampling-confirmed records and to be 
able to better define the territories occupied by species 
[65–67]. Even so, our results suggest that expert knowl-
edge is particularly useful for assessing the distribution 
of threatened species, which are of greatest conservation 
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concern, and should be more appreciated in areas with 
fewer funds devoted to sampling efforts.

On the other hand, according to expert criteria about 
thirty percent of Uruguay amphibian species occupy 
territories throughout all of the country [17]. However, 
favourable zones identified by models based on sampling 
records made it clear that, for these widely distributed 
amphibian species, there are zones of low or intermedi-
ate environmental favourability in which these species 
are probably absent or present in lower abundances [9, 
68]. Although experts overestimate the distributions of 
species in the same way irrespective of species status as 
threatened or not, for widespread species, this overpre-
diction leads to uninformative prediction (ubiquity of 
the distribution). In contrast, models based on observed 
records had a significantly lower overprediction rate for 
ubiquitous species than for the other groups for spe-
cies, helping them to provide better information on the 
nuances of the distribution patterns of widespread spe-
cies [5, 9, 55, 69].

Combination of models based on experts and on records
The use of fuzzy methods, such as favourability functions, 
to analyse species distributions provides fuzzy degree val-
ues to interpret the occurrence of species, yielding more 
dynamic results than those provided by classical mod-
elling techniques [5, 6]. One new possibility is to com-
bine models based on records and on expert knowledge. 
Some researchers have integrated recorded occurrences 
and expert data into the same modelling approach [36], 
or compared models resulting from both approaches [9, 
34]. Fuzzy logic, rather, allows the combination of the 
models based on the two separate information sources [5, 
44]. The application of fuzzy intersection defined areas 
that were consider favourable in the two types of mod-
els. This generally resulted in distribution limits mainly 
established by expert knowledge for threatened species, 
whereas they were more similar to the models based on 
recorded data for the rest of species (Fig.  2). Thus, this 
method of achieving a consensus between models based 
on the two kinds of information is able to give a higher 
weight to the best model for each species.

Conclusions
In line with the findings of other authors [9, 11, 34, 
36], this study emphasizes the crucial role of incorpo-
rating expert judgment in distribution models. In the 
case of threatened species, the expert opinion on these 
species allowed for a more nuanced and accurate rep-
resentation of the habitat requirements of the species 
and the factors that influence their distribution [57]. 
The use of fuzzy logic provides more dynamic tools 
that can be used to study the uncertain distribution of 

biodiversity, allowing extraction of the best informa-
tion from observation records and expert knowledge. 
Our analysis demonstrated quantitatively that the fuzzy 
set of favourable areas predicted from expert knowl-
edge was as accurate as that predicted by field records 
themselves, and even better in the case of threatened 
species. In addition, the models based on expert crite-
ria encompassed a greater explanatory complexity to 
define the requirements of these species. For general-
ist species, models based on observed data were more 
accurate.

This approach provides relevant information when 
planning territories to be protected, and highlights ter-
ritories in which sampling efforts should be improved 
to assess the state of conservation of the biodiversity of 
these areas. We propose that the fuzzy union between 
the models based on record data and on maps provided 
by experts can be used to design a national sampling 
strategy in Uruguay. This would validate the applicabil-
ity of this new methodology for other fauna groups and 
regions.
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